发布时间: 2019-07-26 16:45:44
JDBC介绍
Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。
从MySQL中加载数据(Spark Shell方式)
1.启动Spark Shell,必须指定mysql连接驱动jar包
/home/hadoop/apps/spark/bin/spark-shell \
--master spark://hdp08:7077 \
--jars /home/hadoop/mysql-connector-java-5.1.45.jar \
--driver-class-path /home/hadoop/mysql-connector-java-5.1.45.jar
--executor-memory 1g
--total-executor-cores 2
2.从mysql中加载数据
scala> case class Emp(empno: Int, ename: String, job:String,mgr:Int,hiredate:java.util.Date,sal:Float,comm:Float,deptno:Int)
scala>var sqlContext = new org.apache.spark.sql.SQLContext(sc);
scala> val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://hdp08:3306/sqoopdb", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "emp", "user" -> "root", "password" -> "root")).load()
3.执行查询
jdbcDF.show()
将数据写入到MySQL中(打jar包方式)
本文介绍使用Idea 开发spark连接mysql操作,并建立maven 工程进行相关开发
Maven中的pom.xml文件依赖
<dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.6.0</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.10</artifactId> <version>1.6.0</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.10</artifactId> <version>1.6.0</version> <scope>provided</scope> </dependency> |
编写Spark SQL程序
package net.togogo.sql import java.util.Properties import org.apache.spark.sql.{SQLContext, Row} import org.apache.spark.sql.types.{StringType, IntegerType, StructField, StructType} import org.apache.spark.{SparkConf, SparkContext} object JdbcRDD { def main(args: Array[String]) { val conf = new SparkConf().setAppName("MySQL-Demo") val sc = new SparkContext(conf) val sqlContext = new SQLContext(sc) //通过并行化创建RDD val personRDD = sc.parallelize(Array("1 tom 5", "2 jerry 3", "3 kitty 6")).map(_.split(" ")) //通过StructType直接指定每个字段的schema val schema = StructType( List( StructField("id", IntegerType, true), StructField("name", StringType, true), StructField("age", IntegerType, true) ) ) //将RDD映射到rowRDD val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt)) //将schema信息应用到rowRDD上 val personDataFrame = sqlContext.createDataFrame(rowRDD, schema) //创建Properties存储数据库相关属性 val prop = new Properties() prop.put("user", "root") prop.put("password", "root") //将数据追加到数据库 personDataFrame.write.mode("append").jdbc("jdbc:mysql://hdp08:3306/sqoopdb", "sqoopdb.person", prop) //停止SparkContext sc.stop() } } |
打包与运行
1.用maven将程序打包
2.将Jar包提交到spark集群
/home/hadoop/apps/spark/bin/spark-submit \
--class net.togogo.sql.JdbcRDD \
--master spark://hdp08:7077 \
--jars /home/hadoop/mysql-connector-java-5.1.45.jar \
--driver-class-path /home/hadoop/mysql-connector-java-5.1.45.jar \
/home/hadoop/schema.jar
上一篇: 华为HCIE认证培训课程等你来